

Rob van der Meer 6th November 2017

HeidelbergCement is a leader in building materials with operations in over 60 countries

"We are committed to fulfilling our share of the global responsibility to keep temperature rise below 2°C, and we will continue to reduce our impacts on air, land and water."

Group performance 2016

Parameter	Unit	1990	2000	2005	2010	2015	2016
Clinker production	Mtons/a	55.5	47.1	48.6	45.8	54.4	70.1
Cementious productions	Mtons/a	65.3	58.3	62.5	60.8	74.3	94.7
Absolute Gross CO ₂ emissions	Mtons/a	51.0	42.0	42.1	39.7	46.5	59.5
Net CO ₂ emissions	Mtons/a	50.4	40.7	40.4	37.7	44.2	56.6
Net CO ₂ per ton of cementitous	kg CO2/ton cementitious	781	720	674	653	626	628
Improvement rate	% compared to 1990		9.5%	16.3%	19.7%	22.9%	22.6%

HeidelbergCement voluntary emissions reductions target for 2030

> In 2030 30% reduction of net emissions per ton of cementitious products compared to 1990

EXECUTIVE SUMMARY

-Conclusions

Your existing 30% scope 1 intensity reduction target from 1990 to 2030 would be acceptable for the Science Based Targets initiative.

- > However, to meet the SBT requirements, you need to cover 95% of your scope 1 and 2 emissions in your targets.
- > Your combined scope 1 and 2 science-based targets is -15% in 2030 versus 2016.
- You can meet this target by meeting your existing scope 1 intensity target and reducing your scope 2 emission intensity by 18%, for example through purchasing green power.

–Additional findings

- > Your combined scope 1 and 2 science-based intensity target for 2050 is -50%.
- > You can use net emissions for your science-based target setting.
- You don't need to set scope 3 targets, because your scope 3 emissions are not larger than 40% of your total footprint.
- > A beyond 2°C scenario would be significantly more ambitious than a 2°C scenario. Your existing target would not be sufficient to reach this.
- For the target setting process, you won't need to submit any other data to the CDP than what you need to fill in in the submission form.

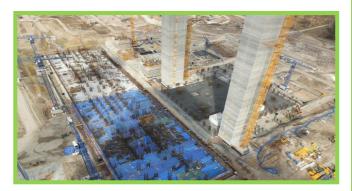
Recommendations

> We recommend you to commit to combined scope 1 and 2 science-based targets of at least -15% in 2030 versus 2016. You can meet these targets by meeting your existing scope 1 intensity target and by reducing your scope 2 emissions by minimum 18%.

Innovation in concrete: the construction material needed by society and development

Source: UNEP Report 2016: "Eco-efficient cements"

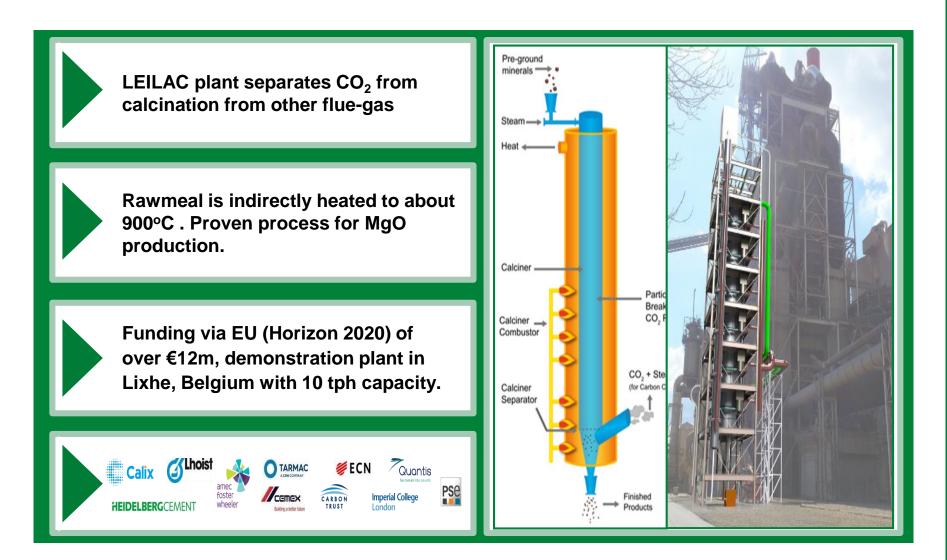
Reduction of the carbon footprint R&D Focus Areas


Levers for CO_2 reduction in cement / concrete industry

- Reduction of clinker content in cement and concrete
 - Using composite cements resp. byproducts from other industries, in particular slag -REGEN (ggbfs) or fly ash (FA) (state of the art)
 - Alternative cementitious materials increase flexibility
- Alternative cementitious systems without OPC clinker
 - Development of OPC-free binders requires time and effort (performance, durability, standardization)
- Carbon capture and storage / utilization
 - Pilots on capture technologies in Norway, Belgium, Italy
 - Use of CO₂ to generate Methane, other fuels and bio mass (fish meal)
- Recarbonation of concrete

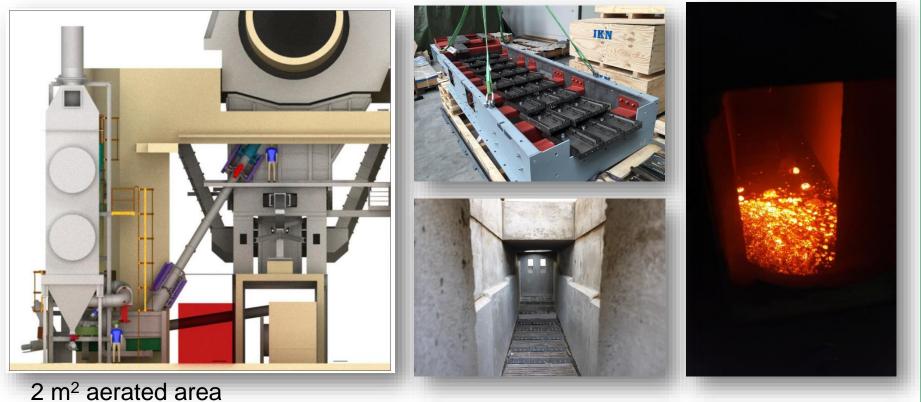
Use of by-products from other industries in composite cements

Fly ashes cement used for a dam in Morocco

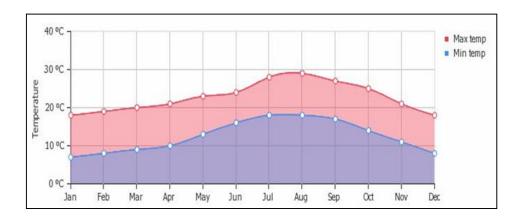


Use of slag cement for basements and massive construction parts for a power plant in Poland

HEIDELBERGCEMENT


We follow various approaches to reduce CO₂ in concrete

CO₂ separation@calcining at LEILAC



CEMCAP PROJECT: Pilot-scale clinker cooler in CO₂ recirculation

This pilot-scale test has been organized at HeidelbergCement Hannover plant. The project and the installation are supplied by IKN.

Micro-algae project to use CO₂

Climate Safi (close to sea) ideal

- Large plot of non-arable land
- Access to PV-electricity improves LCA
- Low costs per kg (low wages + high output)

CO₂ sequestering in minerals; 3 year R&D for 3 m€

- 90% funded BMBF program with next project partners
 - HeidelbergCement (HTC Global R&D)
 - RWTH Aachen present with 4 institutes
 - IASS Potsdam (Stakeholders + LCA)
- Minerals to be investigated:
 - > Natural: basalt, olivine
 - > By-products: steel-slag, concrete fines

Focus points:

- How much and how fast can CO2 be sequestered
- > Value of generated products (chemical and physical properties)
- > Energy-balance, LCA and economic aspects

Conclusions

1. Global emissions of cement and concrete industry have to be reduced significantly to achieve the 2 degrees scenario from Paris.

2. Several options exist

- 1. Process improvements: energy efficiency, alternative fuels, etc.
- 2. Low carbon cements, clinker substitution, alternatives to clinker and cement
- 3. CCS and CCU

All options have to be explored !

3. HeidelbergCement committed to fulfil its share.